Copyright © 1975 American Telephone and Telegraph Company
THE BerL SysteMm TecHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

System Error Control

By L. J. GAWRON

(Manuscript received January 3, 1975)

Brrors occur even in well-designed, well-tested systems. This paper
describes how errors are detected and controlled in the SAFEGUARD system
and makes recommendations pertaining to the design of error control in
large-scale, real-time control systems.

I. INTRODUCTION

SAFEGUARD is a fault-lolerant system. It can perform its tactical
function even in the presence of many types of errors, including latent
design errors, hardware failures, and operator mistakes. This paper
describes some of the automatic error-control features of a generic
SAFEGUARD Data-Processing System (pps) and also the important role
of manual eontrol in maintaining the operational integrity of the pps.

Il. AVAILABILITY-RELIABILITY REQUIREMENTS

What are the availability and reliability requirements of the SAFE-
GUARD system? How are they satisfied? What is the role of error
control?

As it pertains to SAFEGUARD, availability is the probability that the
system is capable of performing its tactical functions—surveillance,
tracking, intercept, etc.—at any given point in time. Reliability is the
conditional probability that the system will function through the
duration of a missile attack provided that the system is available at
the beginning of that attack. The product of availability times reli-
ability is required to be high to provide adequate assurance that the
system can, at any time, quickly detect a missile attack and success-
fully defend against it. During peacetime operation, the emphasis is
on availability so that the system can perform continuous surveillance
and be ready at all times to wage battle against offensive missiles.
During a battle, the emphasis is on reliable operation which includes

s123

avoiding significant interruption of tactical performance for any
reason, even in response to errors.

Availability and reliability are both enhanced through the use of
highly reliable, individual, hardware and software components, as
well as through the use of inherently fault-tolerant hardware and
software systems. For example, the pps hardware design features
extensive component redundancy and multiprocessor control. (The
availability and reliability advantages of multiprocessor computers are
commonly accepted today.!) The software design also has many
features that minimize its vulnerability to errors. For example, it has
decentralized system control. This means that total control is not
contained in any single, and thus highly vulnerable, software module.
It has distributed software execution control, i.e., all processors are
treated equally. There is no single controlling processor, which would
have an inherently greater vulnerability to errors. Also, the software
makes minimal use of particularly vulnerable data structures such as
linked lists. In addition to the use of highly reliable components and
a fault-tolerant design, thorough testing is also performed to ensure
that all components, as well as the total system itself, function as
intended.” Thus, error prevention is one of the principal means of
satisfying the availability-reliability requirements of the system. The
other is error control.

Error control enhances system availability by aiding in rapid detec-
tion and replacement of faulty components. The pps contains re-
dundant components and, in conjunction with the software, it is
self-diagnosing. The prs i1s normally configured into two distinet
partitions: one, called the green partition, is the primary computer
system ; the other, called the amber partition, is a secondary computer
system containing the redundant units. When a faulty green partition
unit is detected, a reorganization or reconfiguration of the pps may be
initiated either by the pps itself or manually by a pps operator in order
to replace the faulty unit with its redundant counterpart. However,
such replacements generally require interruption of tactical perform-
ance for several seconds.

Error control also enhances reliability by confining errors to mini-
mize their effect on tactical performance, and thus minimize the need
for such replacements during a battle. The remainder of this paper
describes in greater detail how error control helps to satisfy SAFE-
GUARD’s availability-reliability requirements, especially as they apply
to the pes.

* Software-debugging and system-testing methods are described in Refs. 2 and 3.

§124 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

lll. SYSTEM ERROR-CONTROL STRUCTURE

How are errors detected in the SAFEGUARD system? How are the
effects of errors confined? How does the system recover from errors?
This section discusses the general approach to solving these problems.
The following two sections describe in more detail the two principal
aspects of error control, namely error detection and error response.

Figure 1 illustrates the basic system error-control structure. Errors
may be detected by hardware, by software, or by the pps operators.
Software detections include hardware-reported errors. Likewise,
manual detections include both hardware- and software-reported
errors.

Software provides the principal responses to hardware and software
errors. There are two principal classes of error responses: local re-
sponses and system responses. Local responses are attempts to confine
or correct errors at the point of detection. System responses replace
faulty hardware or software components and restore basic system

HARDWARE— AND
SOFTWARE—DETECTED
ERRORS

OPERATING-SYSTEM
AND LOCAL ERROR
APPLICATIONS—PROCESS RESPONSES
SOFTWARE
ERROR REPORT SEVER INDICATION

NOTIFICATION OF NOTIFICATION OF

EXCEEDED ERROR EXCEEDED ERROR

THRESHOLD ERRORA'\'I(DJGG'NG THRESHOLD
HARDWARE—
D THRESHOLDING
SOFTWARE—
DETECTED ERROR REPORT DATA
ERRORS RECORDED FOR

OFF—LINE ANALYSIS
DPS PROCESS
OPERATOR COORDINATOR
INITIATION INITIATION
OF SYSTEM OF SYSTEM
RESPONSE RESPONSE
SYSTEM
ERROR
RESPONSES

INITIATION OF
SYSTEM RESPONSE

LOSS OF SANITY DETECTED
BY THE SYSTEM SANITY TIMER

Fig. 1—System error-control structure.

ERROR CONTROL 8125

sanity. System responses generally require a brief (several-second)
interruption of tactical operation.

During normal peacetime operation, both local and system responses
contribute to system availability by correcting errors and replacing
faulty components. During battle-mode operation, the emphasis is on
local responses to assure reliable operation by confining and correcting
errors and to avoid the need to interrupt tactical operation for the
purpose of performing system responses.

Specific local responses depend on the type of error detected. Several
examples of such responses are described in Section 5.1. In addition to
any specific response that might be performed, one common local
response is to report the error to a centralized error logging and thres-
holding function. This function logs (records) the error-report data
onto tape for use in off-line error analysis. It also keeps a record of
error occurrences. If a report causes an error count or an error rate
for the associated class of errors to exceed a prespecified threshold,
then several additional common local responses may be taken. One
such response is to return a sever indication to the program that
reported the error. Severing is a method by which a program is per-
mitted to degrade the operation of certain noncritical parts of the
SAFEGUARD system by simply removing them from service. Its purpose
is to avoid recurrence of errors. Typical components that could be
severed are operating-system modules, such as data recording, or
certain cLc peripherals such as printers, tape units, TTYs, etc. In
addition to severing, another common local response to an exceeded
error threshold is to notify a pes operator and/or the highest-level
software-control function called the process coordinator.* Either may
then initiate a system response.

In general, system error responses may be invoked manually, by
the process coordinator, or by a special hardware device called the
system sanity timer. (Use of the sanity timer is described in Section
4.1.) System responses involve reinitializing the software and/or re-
configuring the pps to remove faulty components. One of the principal
system responses is pps recovery which includes both pes reconfigu-
ration and software reinitialization. System error responses are dis-
cussed in greater detail in Section 5.2.

IV. ERROR DETECTION
4.1 Hardware detection

Error-detection circuitry is an integral part of the pps. For example,
the processors detect errors such as arithmetic overflow or attempts

* The entire collection of operating system and application software that execute
on a single cLc partition is called a process.

$126 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

to store data into nomnexistent memory locations. When such errors
are detected, a processor interrupt is generated and the processor
transfers execution countrol, via the operating system, to the program’s
local-level interrupt-response code. Peripherals detect various types of
input/output (1/0) errors, e.g., data-transfer parity errors. Such errors
are reported to the software via 1/0 status returns.

In addition to the error-detection logic, which is a part of basic
circuit design, the pps also contains hardware devices specifically
designed to aid in error detection. One such device is the crc’s status
unit. It reflects the hardware status of each processor, memory rack,
and peripheral, as well as of the radar and missile equipment. This
status information obtained from the hardware is accessible to the
software and displayed to the operators. Typical status-unit indicators
are ‘“‘processor disabled,” “tape unit power marginal,” “missile equip-
ment internal error,” ete.

Another special error-detection device is the Maintenance and
Diagnostic Subsystem (m&pss) sanity timer. This timer must be reset
by the operating system’s task scheduler every 50 4 10 ms as an
indication of basic system sanity, i.e., that the software is still executing
on the crc. If the operating system fails to reset it within the correct
time interval, the sanity timer will automatically initiate pPs recovery.

4.2 Software detection

Just as error-detection circuitry is an integral part of the hardware,
error-detection code is an integral part of the software. For example,
the operating system performs input-validity checks on call parameters
and the weapons process performs data-reasonableness checks on
important data such as radar return signals.

The software also performs several types of hardware diagnostic
tests. The operating system performs diagnostics on the DPs equip-
ment; the weapons process performs diagnostics on the radar and
missile equipment. For example, whenever the operating system re-
configures the pps, it performs normal path diagnostics to verify that
each green-partition cLc unit functions properly. Also, during tactical
execution, cLCc units and peripherals in both partitions undergo
additional tests. For example, the operating system contains programs
called real-time exercisers which test each green-partition memory rack
every five minutes. They compare the entire program-store contents
with a program-store image on disc to verify that no programs have
been modified. They “read test” each variable store rack in its entirety,
and they “write test” the first two words and the last two words of
each variable store rack by storing test-pattern data into these words
and then fetching the words to verify their contents. These four

ERROR CONTROL S§127

words in each variable store rack are reserved for this testing purpose.
The weapons process contains continuously running radar tests that
verify the basic functional operation of the radars. It also contains
manually invokable radar tests and missile tests, which are more
extensive diagnostics and which are used when faults are suspected in
this equipment.

Extensive m&pss diagnostics, capable of isolating faults to the
chassis level, are also performed on amber cLc units and peripherals.
All pps units are periodically reconfigured out of the green partition
(replaced by their redundant counterparts) in order to undergo such
testing in the amber partition. The purpose of these tests is to minimize
the probability of failure in green-partition units by detecting poten-
tially faulty units before they actually fail. m&pss tests are scheduled
by the cLc operating system and are initiated manually. Processors
may be reconfigured without terminating execution and are scheduled
for M&Dss testing hourly. Other cLc units and the 1/0 subsystem require
an interruption of tactical execution in order to be reconfigured. The
entire 1/0 subsystem is scheduled for m&pss testing every four hours.
CLC units other than processors are not automatically scheduled for
M&Dss testing; however, such tests may be initiated on those units
manually at any time.*

In addition to hardware diagnostic tests, a system exerciser® is used
to periodically test much of the total hardware/software system.

4.3 Hardware- and software-reported errors

The hardware and the software report many of the errors they
detect to the pps operators. For example, the operators’ consoles have
many hardware- and software-controlled error-indicator lamps. A
system-status panel displays much of the information in the cLc’s
status unit, thus indicating the operational status (working, faulted,
off-line, ete.) of the cLc units and peripherals. Software also notifies
the operators of exceeded error thresholds via error-report messages.
With the wide variety of error-status information available to him, a
pPs operator often better comprehends the system’s error environment
than do either the hardware or the software and, in many cases, he
must determine whether or not a system level response should be
initiated.

V. ERROR RESPONSES
5.1 Local responses

Local error responses are attempts to automatically confine or
correct errors at the point of detection. They are important in all
modes of operation, but especially in the battle mode where they are
a significant factor in short-term system reliability.

$128 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Programs commonly use the centralized error-logging-and-thres-
holding function to report, record, and threshold errors they detect.
They also perform many kinds of specific local responses designed to
correct or confine the effects of a specific type of error detected. The
following are several typical examples of such responses.

A program’s response to a processor interrupt might be to re-
initialize a critical portion of its data base using default values, to
unlock any locked data sets, and to exit. If an 1/0 error is detected, a
program might retry the 1/o operation. If a radar return-tracking
signal fails a data-reasonableness check, a program might employ an
algorithm to ‘“‘coast” the object’s track for one radar cycle.

Suppose repeated error indications in the status unit for a peripheral
device cause an error-report threshold to be exceeded. If the periph-
eral is not essential for tactical operation, the peripheral device manager
could sever it, thereby degrading system operation but avoiding
recurrence of the errors and also avoiding the possibility of propagating
the errors into other parts of the system.

In the case where memory errors detected and reported by the
real-time exercisers exceed a threshold for a certain memory rack, the
only local response is the error-logging-and-thresholding function’s
notification to a pps operator and to the process coordinator. Either
may then initiate a system response to replace the rack with a spare.
Such a replacement might be done during surveillance-mode operation,
but not during a battle. During battle-mode operation, the software’s
local responses must be able to recover from any errors that might
occur either in the memories or in other parts of the system.

5.2 System responses

System level error responses are used to reinitialize the system or to
replace faulty components. They are invoked automatically by the
system sanity timer or by the process coordinator in response to certain
errors that cannot be easily corrected at the local level. In many
instances, they are invoked manually in response to errors or com-
binations of errors reported by the hardware or the software. System
responses are performed by the operating system but they are never
initiated by it. System-error responses contribute to system avail-
ability, but they may be inhibited during a battle to prevent interrup-
tion of tactical operation.

There are three basic system level error responses: reinitialization,
reconfiguration, and pps recovery. Reinitialization involves reloading
the system’s entire data base. It can be initiated by the process co-
ordinator to restore severed software components. Reconfiguration
involves swapping pps units between the green and amber partitions.
It provides a method for the software’s process coordinator or for an

ERROR CONTROL 8129

operator to replace faulty or severed hardware units in the tactical
(green) partition with their redundant counterparts from the amber
partition. However, pps reconfiguration is most commonly used by an
operator to switch units from the green partition to the amber partition
for Mm&pss testing. The most commonly used system-error response is
DPs recovery. It is the easiest to use because errors do not have to be
localized beforehand. It is also the only system error response which
may be invoked either by hardware (the sanity timer), by software
(the process coordinator), or manually by a pps operator.

DPS recovery reinitializes the entire hardware/software system in
approximately 10 to 20 seconds, depending on the cic configuration
size. Once initiated, DPs recovery proceeds automatically under the
control of the operating system. It involves the following steps:

() Terminating process execution.

(1) Saving the system image (including the data base, the con-
tents of the status unit, and the contents of the processor
registers) on disc for possible later analysis.

(¢7¢) Running normal path diagnostics, and reconfiguring the cLc
to eliminate faulty units if necessary.

(i) Completely reinitializing the software by reloading all programs
and the entire data base with fresh copies from dise.

(v) Resuming tactical execution.

V1. EXPERIENCE/RECOMMENDATIONS

The following are a few key points and recommendations based on
the SAFEGUARD experience with error control. The recommendations
are believed to be generally applicable to designing error control into
large-scale, real-time control systems.

() A system’s error-control guidelines and error-control structure
must, be defined early. They are required early in the design if
the system is to have a consistent approach to error control.

(¢0) Error logging must be provided as one of the first software
functions. It is an invaluable debugging tool.

(ziz) Certain error-control features, e.g., audits, must be considered
early to make implementation feasible. SAFEGUARD might have
made greater use of data-base audits if the data base had been
designed with audits in mind.

(v2) Testing local error responses is difficult, but it is important
for reliable operation. To enhance reliability, keep local re-
sponses simple and testable. To help simplify testing and to
help reduce the amount of code devoted to local responses,
categorize errors to minimize the number of different local

$130 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

responses required. Many natural opportunities for testing
local-error responses occur during early software testing. To
take advantage of these opportunities, local-error responses
must be implemented during early software development.

(v) Error responses should be easily modifiable. The desired re-
sponses may change as operational experience with a new
system provides additional information about error occurrence
rates. In the SAFEGUARD system, centralized, table-driven
error-thresholding functions and system error-response maps
permitted tailoring many of the local and system error re-
sponses as experience with the system grew.

(iv) Hardware and software status returns should be ‘‘response
oriented.” They should inciude a simple code indicating what
to do about an error, that is: retry the operation ; reset the de-
viee or correct a parameter first, then retry ; don’t retry, the de-
vice is broken ; etc. More detailed status information to further
identify the nature or cause of the error may also be included,
but it should be independent of the response-oriented status.
The detailed status may be recorded by software for off-line
analysis.

(vit) Manual error control or manual override should be provided
even for automatically operating or self-repairing systems.
Manual control is essential for “bringing up”’ systems—even
automatic systems. It is also invaluable when automatic
systems fail to operate, or when self-repairing systems fail to
repair themselves.

REFERENCES

1. P. H. Enslow, Jr., Ed., Multiprocessors and Parallel Processing, New York: John
Wiley, 1974.

2. A. K. Phillips, “SareGuarDp Data-Processing System: Debugging a Real-Time
Multiprocessor System,”” B.8.T.J., this issue, pp. S133-S145.

3. B. P. Donohue III and J. F. McDonald, “Sarecuarp Data-Processing System :
Process-System Testing and the System Exerciser,” B.S.T.J., this issue, pp.
S111-S122.

4. J. R. Hahn, Jr. and F. E. Slojkowski, “Sareguarp Data-Processing System:
Maintenance and Diagnostic Subsystem,” B.S.T.J., this issue, pp. S63-S72.

ERROR CONTROL $§131

